
Noname manuscript No.
(will be inserted by the editor)

twister: the development of a peer-to-peer

microblogging platform

Miguel Freitas

Received: date / Accepted: date

Abstract This paper proposes a new microblogging architecture based on
peer-to-peer networks overlays. The proposed platform is comprised of three
mostly independent overlay networks. The first provides distributed user reg-
istration and authentication and is based on the Bitcoin protocol. The second
one is a Distributed Hash Table (DHT) overlay network providing key/value
storage for user resources and tracker location for the third network. The last
network is a collection of possibly disjoint “swarms” of followers, based on the
BitTorrent protocol, which can be used for efficient near-instant notification
delivery to many users. By leveraging existing and proven technologies, twister
provides a new microblogging platform offering security, scalability and privacy
features. A built-in mechanism provides incentive for entities that contribute
processing time to run the user registration network, rewarding such entities
with the privilege of sending a single unsolicited (“promoted”) message to the
entire network. The number of unsolicited messages per day is defined in order
to not upset users.

Keywords peer-to-peer · microblogging

1 Introduction

Microblogging platforms are one of the most versatile and empowering tech-
nologies on the internet today. Recent events have shown the important role
of these tools for news coverage [23] and also for political movements, like in
Middle East’s “Arab Spring”. Although their role in social revolutions should
not be overstated [13], it is telling to learn how dictatorships frequently resort

Miguel Freitas
Centro de Pesquisa em Tecnologia de Inspeção
Pontif́ıcia Universidade Católica do Rio de Janeiro
Rio de Janeiro, RJ, 22453-900, Brazil.
E-mail: miguel@cpti.cetuc.puc-rio.br



2 Miguel Freitas

to shutting down the internet in trying to control such potentially destabilizing
movements [10, 28]. Blocking internet access, however, is never fully effective
against social movements, as some people always find ways to circumvent such
blockage [4].

The possibility that the service providers themselves could be convinced
to participate of a social media blockage [12] would affect people’s ability to
communicate in a much more dramatic way than just disrupting a few network
backbones. As our society’s dependence on these services increases, the single
point of failure on such basic communication platforms (at the provider’s own
discretion) is not only unacceptable but also directly opposes the Internet’s
key design feature of providing redundancy for information transmission [32].

Reports of widescale internet wiretapping with the cooperation of large
corporations [11] reveal the danger the present platforms pose to user’s privacy.
The fact that a single entity is able to access private communication and
personal data at their will should raise serious concerns. A recent House of
Lords (UK) report openly recognizes the dangers of this massive surveillance1.

All these facts point to an obvious direction: there is an urgent need for
open, secure and distributed personal communication platforms. This is where
the present peer-to-peer (P2P) microblogging proposal fits in.

Of course, to be sucessful, such P2P microblogging cannot just provide
resilience and security, but it must also be user-friendly. This is a key point to
the adoption of any new software or web service. Some current P2P message
proposals offer good examples of what not to do in terms of user-friendliness,
like requiring the user to know a cryptic address composed of 36 case sensitive
characters [29].

The ability to provide easy to remember usernames must be considered
a fundamental requirement. While users must be free to choose their user-
names, thus providing anonymity to whoever needs to express himself freely
without fear of retaliation, it is important to realize that a web of trust is
built on these microblogging infrastructure based upon real existing and fully
identifiable people. This issue can be appreciated in Hudson plane crash cover-
age [23] where trusted aggregators helped separating the reliable information
from noise. These people tend to function as hubs for information distribution
and are often defined as “influential”. Any serious P2P microblogging proposal
must foster this kind of organization.

This paper presents a proposal of a new P2P microblogging platform that
is scalable, resilient to failures and attacks, does not depend on any central
authority for user registration, and provides both easy-to-use encrypted private
communication and public posts. The architecture tries to leverage existing
and proven P2P technologies as much possible. Privacy is one of the primary
design concerns, providing protection of the user’s online presence and IP
address as well as his reading habits.

1 “Mass surveillance has the potential to erode privacy. As privacy is an essential pre-
requisite to the exercise of individual freedom, its erosion weakens the constitutional foun-
dations on which democracy and good governance have traditionally been based in this
country.” [15]



twister: the development of a peer-to-peer microblogging platform 3

2 Decentralized microblogging issues

A completely decentralized microblogging proposal must address several
technical difficulties that are not applicable to a standard centralized approach.

The first challenge is to obtain a globally unique username mapping that
everybody will agree upon. In a conventional microblogging platform a single
centralized database trivially does the job, so this is effectively a non-issue. In
a fully decentralized system, however, there is no authority hierarchy so any
peer may possibly hold a different database. The agreement between peers
must therefore be algorithmically resolved and embeded into the P2P pro-
tocol. twister’s proposal to this issue leverages Bitcoin’s distributed ledger
solution [18], adapting the mechanism to a non-financial application. This is
further described in section 6.

The centralized microblogging plataform’s main activity is to operate as
a store and forward facility for user’s posts. Because every user authenticates
with the server when they log in, their posts are guaranted by the server to
be authentic. Forgery produced by directly modifying the server’s database
is often not considered a threat in this model. Another crime, the unlawful
wiretapping of personal comunications, is also not perceived as a threat by
most people even though there are known cases of provider’s employees who
have been caught spying into user’s chats [1].

In contrast, the P2P microblogging platform has to allow every peer to
operate as store and forward node. Unlike the centralized approach, these re-
laying facilities must be assumed individually unreliable or even malicious.
There are two main aspects to be considered when communicating through
untrustworthy peers: redundancy plus diversity of routes, and end-to-end au-
thentication plus encryption. Peers trying to forge posts of other users must
not succeed because all twister’s posts are signed by the sender. Private mes-
sages must be encrypted so intermediate peers won’t be able to inspect their
contents or metadata. Besides these basic premises, twister does not require
any single specific cryptographic algorithm to be used, so generic asymmetric
cryptography operations are described in sections 6-8.

Section 4 explores some additional network implications of the untrustwor-
thy peers model. General attacks against P2P networks [27] however (those
which are not specific to the microblogging application are deliberately not
discussed) except for privacy-related node addressing P2P issues in section 7.

Scalable storage and retrieval of arbitrary resources in P2P networks are
provided by a structured network overlay organized as a Distributed Hash Ta-
ble (DHT) [16]. Most of the DHT usage in a microblogging scenario is straight-
forward, like using predefined hash entries in order to retrieve user’s profiles
and avatars. The twister’s DHT secure primitives are defined in section 7 while
specific proposals which adapt the DHT infrastructure to implement common
microblogging features, such as linking posts, thread navigation and hashtags,
are discussed in section 8.

The microblogging decentralization based on P2P further requires that
peers contribute some storage capacity back to the network to provide the



4 Miguel Freitas

overall storage capacity. In order to be scalable and also robust against denial-
of-service attacks, the amount of data to be stored by each peer has to be
constrained. Appropriate limits have been implemented to address these con-
cerns (see section 9) while providing an experience which is compatible with
the known usage profile of the existing centralized platforms in terms of the
content produced [25]. The scalability assumption is that the number of on-
line peers (the ones that maintain the distributed total storage) preserves
proportionality to the amount of data to be persisted. In other words, some
proportion is assumed to exist between number of online peers and the total
number of users and between the number of users and the total amount of
posts to keep.

The last remaining issue of paramount importance to successfully deploy
a decentralized microblogging is to ensure efficient and near-instant propaga-
tion of posts from producers to followers. The simplest DHT-based solution of
periodically checking a specific hash entry for updates (where the last status is
posted by each user) is neither scalable nor efficient. This is referred to as the
“lame, repeated polling” issue by the developers of the PubSubHubbub proto-
col [7] because it would require the user to keep polling everybody he follows.
twister’s proposal to the near-instant notification issue is to leverage BitTor-
rent’s protocol [2]. BitTorrent is an unstructured P2P overlay network for
distributing files by sparing the producer (the “seeder” in BitTorrent nomen-
clature [31]) from using his bandwidth to serve all the interested peers (the
“swarm”). twister implements small changes to the BitTorrent protocol so the
shared data is replaced by a list of posts produced by a given user. New posts
added to the swarm are automatically and efficiently distributed among the
other peers. More details of this mechanism are presented in section 9.

To sum up, the the proposed platform is comprised of three mostly in-
dependent overlay networks, two unstructured and one structured. The first
unstructured overlay network is based on the Bitcoin protocol and provides
distributed user registration and authentication. The second is a structured
DHT network, providing key/value storage for user resources and tracker lo-
cation for the third network. The last, also unstructured, overlay network is a
collection of possibly disjoint “swarms” of followers, based on the BitTorrent
protocol, which is used to provide efficient near-instant notification delivery
to many users.

3 Related work

Existing social networks like Diaspora [8], StatusNet [24] and identi.ca [21]
are frequently cited as free, open and distributed alternatives to Facebook or
Twitter. These platforms are based on the concept of “federated social net-
works” [30] where users may join the social websites of their choice and these
sites communicate with each other using open protocols. While technically
superior to a single, closed platform in terms of achieving better privacy con-
trol, the user still needs to delegate his own data to a third party (unless he



twister: the development of a peer-to-peer microblogging platform 5

wants to setup his own server to federate). So, conceptually, twister and these
federated plataforms are very different things.

Previous P2P microblogging proposals do exist however, like Cucko [33]
and Megaphone [20]. Neither of these addresses the problem of the decen-
tralized user registration. Privacy is also not one of Cucko’s objectives since
it is explicitly designed to know about the online presence of anyone. One
similarity of twister and Cucko is that both share the idea of using an un-
structured overlay network for dissemination of user posts, unlike Megaphone
where all followers must register to the sender, forming a multicast tree for
post propagation.

Another solution to the near-instant notification issue is the already men-
tioned PubSubHubbub protocol [7], which is also decentralized to a certain
degree but still relies on servers (“hubs”) to operate, so it is also conceptually
closer to federation than P2P.

A more advanced social network proposal Safebook [3] addresses several
privacy issues by implementing different levels (“shells”) of access to the pub-
lished data. While Safebook’s scope goes far beyond twister’s, it still relies on
a centralized “Trusted Identification Service” for user registration.

At the present time, except for twister, no public implementation seems
to be available to any of these other P2P proposals. In contrast, twister net-
work [9] has been operating since December 31 2013 with tens of thousands
of registered usernames to date.

4 Threat model

The basic threat model for twister is that any other peer is assumed to
be individually untrustworthy. This untrustworthy peer may try to deceive
users by providing forged posts from other genuine users or refuse to store and
forward some posts. In order to prevent these two scenarios, the twister client
must (1) always check if each post is properly signed by the sender and (2)
propagate the new posts to multiple random clients.

Requirement #1 demands security from the underlying cryptography to
ensure the authenticity of posts and the inviolability of private messages.

Requirement #2 further assumes that the twister client is able to connect
to other truly random peers who would not collude to undermine the privacy
of the user’s IP address (online presence), or even attack and isolate the user
into a separate network. The current threat model, therefore, clearly assumes
the attacker is not a government controlling all the network links but rather
another common user with limited resources. While being a clear limitation of
twister, this is a deliberate choice as to focus on solving the other aspects of the
decentralized microblogging technology. twister’s proposal leaves the problem
of truly secure anonymizing technology implementation to the experts of the
field, namely the Tor Project [22].

As of the date of writing, twister’s current implementation does not fully
support operating on top of a Tor proxy. The two unstructured networks are



6 Miguel Freitas

already Tor-aware, but DHT overlay network uses UDP which is not supported
by Tor. In the near future, twister will implement routing DHT traffic through
other peers in order to be fully compatible with Tor, thus allowing a far more
interesting threat model where the adversary could be a censoring government.

5 Notation

Tuples (concatenation): [a, b, c, ...]
Apply function f to payload x: y = f(x)
One-way hash function: H(x)
Username of user j: Uj

Asymmetric key pair of user j: PUBKj;PRIV Kj

Encryption/decryption operations: PUBKj(PRIVKj(x)) = x

and PRIVKj(PUBKj(y)) = y

Signed content x from user j: SIGj(x) = [PRIVKj(H(x)), x]

6 User registration P2P network

Decentralized yet secure user registration is achieved by means of the Block
Chain mechanism, which is used in Bitcoin [18] to avoid the double-spending
problem without the need for a central authority. In the proposed system the
mechanism is used to guarantee the uniqueness of users, again with no need
for a central authority. New registrations must be “notarized” by a number of
Blocks before they can be considered granted to a given user. Each Block is
defined as:

Blocki = [i,H(Blocki−1), noncei, SpamMsgi, [UserRegj, UserRegj+1, ...]]
where i is the block number, H(Blocki−1) is the hash of the previous

block, noncei is an arbitrary number wisely chosen, SpamMsgi is a promoted
message and UserReg’s are the user registrations. The choice of noncei will
be made in such a way that H(Blocki) presents a partial hash collision. More
specifically, H(Blocki) must start with a certain number of leading zeros so
this quantity defines the difficulty of the brute force searching challenge. This
is the Proof-Of-Work (POW) mechanism of Bitcoin. The number of leading
zeros is automatically set by the network in order to maintain the average
number of blocks per hour.

The Block Chain provides a public dictionary from Uj to PUBKj by col-
lecting all user registrations. A new user j registering to the network must
broadcast UserRegj, which is defined as

UserRegj = [Uj , PUBKj, noncej]
where noncej allows a POW to be set upon H(UserRegj). Other nodes,

upon receiving UserRegj, must check this POW before the request can be
retransmited/accepted. It prevents DoS attacks due to flooding of bogus reg-
istrations and also counterfeiting UserRegj by replacing the PUBKj while
keeping the same username. POW of UserRegj is much smaller than POW of



twister: the development of a peer-to-peer microblogging platform 7

block chain, typically just a few minutes of an average computer time (diffi-
culty may be hardcoded in software and changes only with protocol versions).

Nodes must enforce the uniqueness of Uj before including UserRegj into
a new Block. The only exception to this rule is the key replacement case,
where the new public key is signed by the previously known key pair. The
enforcement of uniqueness of Uj and POW of UserRegj is also applied when
receiving new Blocks, since all registrations included therein must be checked.
Uj is also subject to additional text rules, such as maximum size and allowed
characters.

SpamMsgi is an unsolicited message (commonly and euphemistically called
“promoted”) that must be shown by all clients and provides incentive for join-
ing the Block generation effort. If the same Bitcoin’s block creation rate is
maintained (6 per hour), a display probability factor may be implementated
in order to not upset the users with too much spam. The current twister imple-
mentation will display one promoted post every eight hours (noncumulative).
Developers should not implement hiding of spam messages as a “feature” of
their clients since this incentive is important to the security of the entire net-
work. Omitting unsolicited messages from clients would only hurt the users
in the long run. The display probability also priorizes localization (by giving
higher probability to messages of the same language of the user) to improve
effectiveness and also user’s experience.

7 Secure DHT network primitives

The second P2P network is a structured Distributed Hash Table (DHT)
overlay network based on Kademlia [17]. The single most important feature
of this network is to allow arbitrary resource storage and retrieval by users,
including profiles, avatars and posts. Mapping of resources into specific peers
is based on an one-way hash function, which provides deterministic location of
resources while evenly distributing the content over the network. Special DHT
entries are also used for BitTorrent tracker purposes as discussed in section 9.
Direct delivery of notification between users can be thought of as a secondary
usage for DHT (see section 8.3).

Peers joining the DHT network must do so by providing an address ID

which then becomes a possible destination for other peers’ requests. It would
be tempting to use H(Uj) directly as the ID of the peer joining the DHT net-
work, as it would permit simple challenge-response authentication, possibly
preventing ID forgery. Forged ID addresses is arguably the most serious secu-
rity issue on P2P and DHT networks (see Sybil and Eclipse attacks [27, 34]).
Using H(Uj) for DHT addressing, however, would greatly compromise privacy
since it is a fundamental characteristic of such a network to know the IDs’ of
the other peers in order to create optimized routing tables. This would not just
permit easy detection of online user presence, but also immediately reveals the
user’s IP address to a potential attacker.



8 Miguel Freitas

Therefore, instead of H(Uj) as ID, twister follows the standard procedure
of hashing IP address and port number to obtain the IDnode j used to join
the DHT network:

IDnode j = H ([IPj , port])
In [5] it is shown that a secure mapping of external IPs to ID is Sybil-proof

when limited per participant.
Packets on this DHT network sent from source IDs to IDd are defined as:

Packets→d = [IDd, IDs, SIGj(Payload), Uj)]
The payload is signed by a given user Uj which is possibly unrelated to

the sender’s IDs. In other words, a signed payload may be retransmited by
another node who did not sign it. IDd and IDnode both belong to the same
address space, thus allowing for some distance metric to be used to determine
the proximity between resources and nodes. These characteristics comprise the
basic “layer 3” functionality offered by this overlay network.

Going up in the conceptual model for the proposed DHT overlay network
there is an “application layer” where a data storage primitive (PUT) is defined
with the following payload:

PayloadPUT = [target, value, time, seq] where

target = [owner, resource, restype] and IDd = H(target)
Some simple rules must be checked by the destination node in order to

accept the storage request:

1. IDd = H(target) : ensures the destination address was properly computed.
2. IDd is neighbor of IDnode that actually received this request. 2

3. Uj = owner, only enforced for restype =“single”.
4. seq is greater than previously stored seqold, only enforced for restype =

“single”.
5. time is a valid time (ie, not in future).

The two possible restype values are “single” and “multi”. These two types
provide, respectivelly, resources which may only be updated by the owner of
this key (like an avatar image) and resources which collect multiple responses
from different users (like replies to a certain post). In case of the “single” type,
the node stores just a single value associated with this key IDd. For “multi”,
however, new PUT requests are appended to a list of value’s. This kind of
storage provides no guarantees, as old values may be discarded following some
expiration policy (based on the time field) or Least Recently Used (LRU)
cache strategy. Authenticated (“single”) storage takes precedence over any
previously “multi” value.

A data retrieval primitive (GET) may operate on both types of resources
indistinctively. Some special non-storage resources associated with dynamic
content may also be implemented using the same primitives, thus sharing the
same API.

2 Kademlia [17] defines a XOR metric to measure the distance between two IDs. In this
paper, a “neighbor” is defined as a node which ID distance to the target is ranked within
the smallest ones among all the online nodes.



twister: the development of a peer-to-peer microblogging platform 9

8 Microblogging data structures and mechanisms

8.1 User posts

The k-th message of user j is defined as:

Postjk = SIGj([Uj , k, type,MSGk, REPLYk])

where MSGk is the content (140 characters limited), k is a monotonic
increasing number and type may define if it is a new post, a reply, retrans-
mission (RT) or Direct Message (DM). REPLYk is an optional field which
provides a reference pointer to the original message, in case of a reply/RT (see
section 8.4) and is defined as tuple REPLYk = [Uj′ , k

′], where original post is
the k′-th message of the user j′.

The posts are distributed simultaneously in two overlay networks: (1) as a
stored value, possibly short lived, in DHT network and (2) in a file-like archive
pertaining to a modified BitTorrent swarm. Whenever a new post is created,
the client must send two PUT requests to the following addresses:

IDPost jk = H ([Uj, “post” + k, “single”]) and

IDswarm j = H ([Uj , “swarm”, “single”]).

The IDPost jk is the address of a storage target defined in section 7 and
provides arbitrary post retrieval capabilities.

The IDswarm j is a special gateway address to reach a BitTorrent swarm
(section 9), which contains all posts from a given user j and helps propagate
them independently of the DHT network. The neighbors of IDswarm j are
required to join this swarm, as much as the neighbors of IDPost jk are required
to store the value.

8.2 Direct Messages

User posts may also be used to send a Direct Message (DM) from user Uj

to user Ul, provided that recipient Ul is a follower of Uj (same requirement as
Twitter).

DM(j → l)k = Postjk = SIGj ([“”, k, “dm”, [PUBKl(Mk), H(Mk)]])

One should note that DM is equivalent to a normal post except that

MSGk = [PUBKl(Mk), H(Mk)], as defined in section 8.1 for public posts.

DM is only received by destination user Ul by checking for sucessful de-
cryption of Mk. No other user will know for which recipient the DM was sent
to (metadata monitoring), although the encrypted message will be seen by all
of his followers and more.

This naive description of DM encryption mechanism is only meant to ex-
plain the concept as the actual implementation may differ. Currently, the
working twister prototype is based on a public ECIS (Elliptic Curve Inte-
grated Encryption Scheme) implementation by Ladar Levison [14], formerly
the owner of Lavabit encrypted email service, following the SECG SEC1 stan-
dard [6].



10 Miguel Freitas

8.3 Mentioning

If a post mentions the user Uj by using the syntax “@username”, the client
must also send a notification to IDmention j , by including the full message.
Notification is routed to a “multi” resource

IDmention j = H ([Uj , “mention”, “multi”])

which is set to receive and accumulate mentions and is kept by nodes which
are neighbors of IDmention j as usual.

There are two possible issues here. The first one is again the “lame, re-
peated polling” as the mentioned user would need to periodically poll such
key (although in a much more limited scale than a hashtag, for example). The
second one is the intrinsic lack of a delivery guarantee for “multi” resources.

A way to prevent polling of user mentions to achieve faster delivery while
preserving some degree of privacy is to declare IDmention j as a special re-
source, with more storage capacity, and enlisting their neighbors as “listen-
ers” for this user’s mentions. The listener’s job is to immediately forward the
mentions to the final user whenever the user is online. The idea is partially
based in SASON [26], although not as secure since an additional anonymizing
network is not used.

The system would work like this: the recipient Uj first uses the DHT net-
work to find nodes near IDmentionj

. The user then asks them directly to
forward new mentions to IDnode j , therefore revealing his real IP address to a
small group of listeners. Listeners may perform a challenge validation to make
sure the user is really Uj by asking for SIGj(random number). Since the other
node has access to the full directory of public keys, he can easily authenticate.

Mentioning, like other mechanisms described here, requires the cooperation
of the client software in order to work. If a given user does not send the
notification packet to IDmention j (along with his own post) the mentioned
user would never know.

The current twister software prototype does not yet fully support this
proposal since the listener forwarding mechanism is not implemented. The
twister client is currently required to periodically check DHT resources for
updates, thus causing a few seconds of lag in mentions delivery.

8.4 Explict message request

Any user may explicitly request a certain message from user Uj without
joining the swarm. This is achieved by a simple value retrieval from address
IDPost jk.

Because posts may include a reference to the original post they are reply-
ing to (the REPLYk field), this feature allows for “upward message thread
navigation” like in Twitter and is not resource intensive.



twister: the development of a peer-to-peer microblogging platform 11

8.5 Downward message thread navigation

Downward navigation (finding out about replies/retransmissions of a cer-
tain post) might be a difficult problem since there are many, possibly unlim-
ited, answers to the question “what are the replies to this particular post?”.

One possible solution is to send another notification to the special address
of multi-value list storage:

IDreplies jk = H ([Uj , “replies” + k, “multi”])
The values to store are copies of the replies themselves. Again, it is the

cooperation of client posting the reply which allows this mechanism to work.

8.6 Hashtags

Just like mentioning, hashtags must be detected in the content of any new
messages being posted to the network. A copy of the message is then sent to
a special address of multi-value list storage:

IDhashtag t = H ([hashtag t, “hashtag”, “multi”])
This is pretty much the same mechanism as downward message thread

navigation except for an additional feature: a hashtag may create a new un-
structured P2P swarm to broadcast new posts among their members. This
mechanism is meant to ensure scalability to high-traffic hashtags, but it is not
yet implemented in twister.

8.7 Word search

Searching for arbitrary words may be achieved by extending the hashtag
implementation concept to all words in every post. In order to reduce overhead
and network traffic, certain limits may be imposed, like a minimum word size,
exclude prepositions and so forth.

IDword w = H ([word w, “word”, “multi”])
The word search proposal is not yet implemented in twister.

9 A BitTorrent swarm of posts

The swarm mechanism for distributing new posts is meant to address the
problem of efficient notification of new posts, sparing the followers the need
to do polling on a certain address of the DHT network to check for updates.
The swarm is a modified BitTorrent P2P unstructured overlay network. In
the original BitTorrent, the shared data is divided into pieces of the same
size which have their hashes written to the “torrent” file. Every peer must
download the torrent file beforehand in order to check the integrity of the
received pieces. twister’s swarm, in contrast, maps each post into a piece by
using the same monotonic increasing number k defined in section 8.1. Because



12 Miguel Freitas

every post is user-signed, their integrity may be easily verified without external
hashes, rendering the torrent file mostly unnecessary.

The other function of the torrent file in original BitTorrent is to serve a
list of IPs of the current members of the swarm, allowing a new peer to join
in by connecting to them. Keeping this members list up-to-date is what the
centralized “tracker” server does and is the motivation that led to the DHT
usage in BitTorrent in the first place, that is, to decentralize the online peers
list.

twister’s tracker is a special DHT resource addressed by
IDtracker j = H ([Uj , “tracker”, “multi”])
Instead of just collecting the IPs from other peers which want to inform

they joined the swarm as BitTorrent does, the IDj node that is neighbor of
IDtracker j is also required to join the swarm himself. The reason for this new
approach is twofold. First, it increases the difficulty of a poisoning attack,
where fake peers would announce themselves to the peer list by just sending
and replying to a few UDP packets. With this new mechanism, instead, a
more complete BitTorrent client is required to actually join the swarm to
be announced and, after joining the swarm, additional peers are obtained by
exchanging data with other members. Secondly, it ensures a minimum set
of swarm members that will persist the post’s data even if the user has no
followers at all.

At this point it should be clear that the bootstrap sequence for a user Ul

to start following the user Uj, is to first send a DHT GET request to acquire
an initial list of peers from IDtracker j. Even the producer Uj himself will be
required to join his swarm the same way.

The neighbors of IDtracker j may not be aware of this vicinity until they re-
ceive a DHT GET request for the special “tracker” address. Then, they should
perform additional checks to prevent wastefully joining swarms they are not
tracker of. Current twister implementation also rotates all the automatically
joined swarms in an active list of limited size, therefore keeping network and
computational resource usage limited. The auto-rotation of torrent swarms is
one of the several distinguished twister underlying features that leaverages the
excellent opensource libtorrent project [19].

Any swarm member may announce the availability of a new piece, that
is, a new post. This is also implemented by means of small changes to the
BitTorrent protocol which then takes care of the rest (ie. propagating this
piece among all peers). The fact that nothing in this scheme requires the peer
announcing the new piece to be actually the producer of this post may be
explored to achieve better privacy protection. By creating an additional DHT
address IDswarm j , a simple DHT-to-swarm gateway can be implemented. The
producer using the gateway mechanism is not required to join his own swarm
in order to add new pieces, he just needs to send the post to some of the
neighbors of IDswarm j . The gateway mechanism is not yet implemented in
twister software.

Because swarm members only know each other by their IP address, it is
not possible to construct a list of the followers’ usernames. The act of following



twister: the development of a peer-to-peer microblogging platform 13

an user is unilateral, the followed user doesn’t have to authorize and is not
notified. A consequence of the protocol described up to this point is that the
“following list” is private (the list is only known by its owner).

However, accessing the following list is a widely used feature of microblog-
ging systems because it helps increase the social connectivity of the network.
In order to support this mechanism without losing privacy, twister introduces
the concept of publicly following. It is up to the user, or its client software, to
decide which usernames of the following list should be announced by using a
set of public DHT entries, namely

IDfollowing jn = H ([Uj , “following” + n, “single”])
These entries are lists of usernames, but stored in a resource of the type

“single” since only the owner is allowed to update it. The requirement for
several n entries is to overcome the maximum packet size limits of the UDP
and underlying primitives.

In order to prevent the swarm members from being attacked with a huge
number of pieces to store, the piece number k is constrained by

k < 2 ∗ (icurrent − iUserRegj ) + 20
where icurrent is the last known Block number and iUserRegj is the Block

number the username was registered at. Any post violationing this rule will not
be accepted. Considering that a new Block i is produced every 10 minutes,
this limits the mean post rate of new users, for life, to a maximum of 288
posts/day. Average.

10 Conclusion

This paper has described the development of twister, a new peer-to-peer
microblogging platform with security, scalability, usability and privacy fea-
tures.

Several attack scenarios have been considered and the resulting platform
is believed to be as resilient as some of the most sucessful P2P networks in
use today, namely Bitcoin and BitTorrent.

Design decisions have been presented to support the scalability claims of
the twister proposal. Given a small set of assumptions, the peer’s computa-
tional and network resources utilization should not explode as the number of
users and nodes increases. The number of users and nodes is also believed to
not adversely affect the performance of the system.

Usability issues have been considered in twister’s design. Supporting com-
monly used usernames, instead of long cryptographic hashes as seen in some
other proposals, should make the system as user-friendly as the existing (cen-
tralized) microblogging platforms. The most common operations supported
by these existing systems have been successfully replicated in a distributed
architecture.

For privacy, the architecture makes the compromise to protect the user’s
online presence and IP address as much as possible by design without having
to reinvent a new complete anonymizing network layer. The threat model for



14 Miguel Freitas

that assumes an adversary which is not in possession of unlimited network
resources or that is able to wiretap Internet links at a global scale. Users
demanding further privacy should wait upcoming support in twister in order
to use it on top of Tor [22].

The twister alpha software is available for download [9] and testing. The
network already has tens of thousands of registered usernames. This archi-
tecture opens a wide range of future research topics, ranging from efficient
distributed spam detection to the implementation of more advanced social
features such as group communication.

References

1. Chen, A.: Gcreep: Google engineer stalked teens, spied on chats (updated). http://

gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats/all

(2010). [Online; accessed 1-October-2013]
2. Cohen, B.: The bittorrent protocol specification (2008)
3. Cutillo, L.A., Molva, R., Strufe, T.: Safebook: A privacy-preserving online social network

leveraging on real-life trust. Communications Magazine, IEEE 47(12), 94–101 (2009)
4. Dachis, A.: How to foil a nationwide internet shutdown. lifehacker http://lifehacker.

com/5746046/how-to-foil-a-nationwide-internet-shutdown (2011). [Online; ac-
cessed 23-July-2013]

5. Dinger, J., Hartenstein, H.: Defending the sybil attack in p2p networks: Taxonomy,
challenges, and a proposal for self-registration. In: Availability, Reliability and Security,
2006. ARES 2006. The First International Conference on, pp. 8–pp. IEEE (2006)

6. for Efcient Cryptography Group, S.: Sec1: Elliptic curve cryptography, ver. 2. http://
www.secg.org/download/aid-780/sec1-v2.pdf (2009). [Online; accessed 1-October-
2013]

7. Fitzpatrick, B.: pubsubhubbub - a simple, open, webhook based pubsub protocol
and open source reference implementation. http://code.google.com/p/pubsubhubbub/
(2013). [Online; accessed 24-July-2013]

8. Foundation, D.: Diaspora*. https://diasporafoundation.org/ (2013). [Online; ac-
cessed 1-October-2013]

9. Freitas, M.: twister download site. http://twister.net.co (2013). [Online; accessed
4-April-2013]

10. Glanz, J.: How mubarak shut down egypt’s internet. The Age World http://www.

theage.com.au/world/how-mubarak-shut-down-egypts-internet-20110216-1awjj.

html (2011). [Online; accessed 23-July-2013]
11. Greenwald, G.: How microsoft handed the nsa access to encrypted mes-

sages. The Guardian http://www.guardian.co.uk/world/2013/jul/11/

microsoft-nsa-collaboration-user-data (2013). [Online; accessed 23-July-2013]
12. Halliday, J.: Facebook and twitter to oppose calls for social media blocks

during riots. The Guardian http://www.guardian.co.uk/media/2011/aug/24/

uk-riots-facebook-twitter-blackberry (2011). [Online; accessed 23-July-2013]
13. Khondker, H.H.: Role of the new media in the arab spring. Globalizations 8(5), 675–679

(2011)
14. Levison, L.: Code for using ecies to protect data (ecc

+ aes + sha). http://openssl.6102.n7.nabble.com/

Code-for-using-ECIES-to-protect-data-ECC-AES-SHA-td39269.html (2010). [On-
line; accessed 1-October-2013]

15. of Lords (UK), H.: Surveillance: Citizens and the state, volume i. http://

www.publications.parliament.uk/pa/ld200809/ldselect/ldconst/18/18.pdf (2009).
[Online; accessed 29-July-2013]

16. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S., et al.: A survey and comparison
of peer-to-peer overlay network schemes. IEEE Communications Surveys and Tutorials
7(1-4), 72–93 (2005)

http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats/all
http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats/all
http://lifehacker.com/5746046/how-to-foil-a-nationwide-internet-shutdown
http://lifehacker.com/5746046/how-to-foil-a-nationwide-internet-shutdown
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://code.google.com/p/pubsubhubbub/
https://diasporafoundation.org/
http://twister.net.co
http://www.theage.com.au/world/how-mubarak-shut-down-egypts-internet-20110216-1awjj.html
http://www.theage.com.au/world/how-mubarak-shut-down-egypts-internet-20110216-1awjj.html
http://www.theage.com.au/world/how-mubarak-shut-down-egypts-internet-20110216-1awjj.html
http://www.guardian.co.uk/world/2013/jul/11/microsoft-nsa-collaboration-user-data
http://www.guardian.co.uk/world/2013/jul/11/microsoft-nsa-collaboration-user-data
http://www.guardian.co.uk/media/2011/aug/24/uk-riots-facebook-twitter-blackberry
http://www.guardian.co.uk/media/2011/aug/24/uk-riots-facebook-twitter-blackberry
http://openssl.6102.n7.nabble.com/Code-for-using-ECIES-to-protect-data-ECC-AES-SHA-td39269.html
http://openssl.6102.n7.nabble.com/Code-for-using-ECIES-to-protect-data-ECC-AES-SHA-td39269.html
http://www.publications.parliament.uk/pa/ld200809/ldselect/ldconst/18/18.pdf
http://www.publications.parliament.uk/pa/ld200809/ldselect/ldconst/18/18.pdf


twister: the development of a peer-to-peer microblogging platform 15

17. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on
the xor metric. In: Peer-to-Peer Systems, pp. 53–65. Springer (2002)

18. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted 1, 2012 (2008)
19. Norberg, A.: The opensource libtorrent library. http://libtorrent.org/ (2013). [On-

line; accessed 1-October-2013]
20. Perfitt, T., Englert, B.: Megaphone: Fault tolerant, scalable, and trustworthy p2p mi-

croblogging. In: Internet and Web Applications and Services (ICIW), 2010 Fifth Inter-
national Conference on, pp. 469–477. IEEE (2010)

21. Prodromou, E.: Identi.ca. http://identi.ca (2013). [Online; accessed 1-October-2013]
22. Project, T.T.: Tor (the onion router). https://www.torproject.org (2013). [Online;

accessed 23-July-2013]
23. Sklar, R.: Hudson plane crash on twitter: First reports,

best coverage. MEDIAite http://www.mediaite.com/online/

hudson-plane-crash-on-twitter-first-reports-best-coverage/ (2009). [On-
line; accessed 23-July-2013]

24. StatusNet, I.: Statusnet. http://status.net (2013). [Online; accessed 1-October-2013]
25. Teutle, A.R.M.: Twitter: Network properties analysis. In: Electronics, Communications

and Computer (CONIELECOMP), 2010 20th International Conference on, pp. 180–186.
IEEE (2010)

26. Tsai, H., Harwood, A.: A scalable anonymous server overlay network. In: Advanced
Information Networking and Applications, 2006. AINA 2006. 20th International Con-
ference on, vol. 1, pp. 973–978. IEEE (2006)

27. Wang, L.: Attacks against peer-to-peer networks and countermeasures. In: T-110.5290
Seminar on Network Security (2006)

28. Warner, M.: Syria internet shutdown: A loser’s strategy.
PBS Newshour http://www.pbs.org/newshour/rundown/2012/11/

syria-internet-shutdown---a-losers-strategy.html (2012). [Online; accessed
23-July-2013]

29. Warren, J.: Bitmessage: A peer-to-peer message authentication and delivery system
(2012)

30. wikipedia: Distributed social network. http://en.wikipedia.org/wiki/Distributed_

social_network (2013). [Online; accessed 29-July-2013]
31. Wikipedia: Glossary of bittorrent terms. http://en.wikipedia.org/wiki/Glossary_

of_BitTorrent_terms (2013). [Online; accessed 23-July-2013]
32. Wikipedia: History of the internet. http://en.wikipedia.org/wiki/History_of_the_

Internet#Packet_switching (2013). [Online; accessed 23-July-2013]
33. Xu, T., Chen, Y., Zhao, J., Fu, X.: Cuckoo: towards decentralized, socio-aware online

microblogging services and data measurements. In: Proceedings of the 2nd ACM Inter-
national Workshop on Hot Topics in Planet-scale Measurement, p. 4. ACM (2010)

34. Yang, Y., Yang, L.: A survey of peer-to-peer attacks and counter attacks. In: Interna-
tional Conference on Security & Management (SAM 2012), pp. 176–182 (2012)

http://libtorrent.org/
http://identi.ca
https://www.torproject.org
http://www.mediaite.com/online/hudson-plane-crash-on-twitter-first-reports-best-coverage/
http://www.mediaite.com/online/hudson-plane-crash-on-twitter-first-reports-best-coverage/
http://status.net
http://www.pbs.org/newshour/rundown/2012/11/syria-internet-shutdown---a-losers-strategy.html
http://www.pbs.org/newshour/rundown/2012/11/syria-internet-shutdown---a-losers-strategy.html
http://en.wikipedia.org/wiki/Distributed_social_network
http://en.wikipedia.org/wiki/Distributed_social_network
http://en.wikipedia.org/wiki/Glossary_of_BitTorrent_terms
http://en.wikipedia.org/wiki/Glossary_of_BitTorrent_terms
http://en.wikipedia.org/wiki/History_of_the_Internet#Packet_switching
http://en.wikipedia.org/wiki/History_of_the_Internet#Packet_switching

	Introduction
	Decentralized microblogging issues
	Related work
	Threat model
	Notation
	User registration P2P network
	Secure DHT network primitives
	Microblogging data structures and mechanisms
	A BitTorrent swarm of posts
	Conclusion

